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Introduction 
Critical microwave component 
and receiver technologies are 
under development to reduce 
the risk, cost, volume, mass, 
and development time for a 
high-frequency microwave 
radiometer that is needed to 
enable wet-tropospheric 
correction in the coastal zone 
on the Surface Water and 
Ocean Topography (SWOT) 
Mission recommend as a Tier 
2 mission by the U.S. National 
Research Council’s Earth 
Science Decadal Survey. 
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Current ACT Project 

•    Advanced Component Technology (ACT) project 
started in February 2009. 

•    Thanks to NASA ESTO for their continuing support! 



Reising et al., SWOT-ACT            ESTF 2010, Arlington, VA                              June 24, 2010    4 

Scientific Motivation 

Land Ocean 

•   Conventional altimeters include a nadir-viewing co-located 18-37 GHz 
microwave radiometer to measure wet tropospheric path delay. 
–   Reduced accuracy in coastal zone (within ~50 km from land) 
–   Does not provide wet path delay over land 

•   Addition of higher-frequency microwave channels to Jason-1 and 
OSTM/Jason-2 radiometer will improve retrievals in coastal regions 
and may enable retrievals over land. 

•   High-frequency window 
channels at 92, 130 and 
166 GHz are optimal for 
improving performance in 
coastal region. 

•   Channels near 183 GHz 
water vapor line are ideal 
for over-land retrievals. 
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Path Delay (cm) 130 GHz TB (K) 

SWOT Mission Concept Study 

A radiative transfer simulation coupled with a high-resolution 
Weather Research and Forecasting (WRF) model has been 
implemented to assess retrieval performance and determine 
instrument requirements.   

Example radiometer simulator output off Southern California 
2     3     4     5      6      7     8     9   222     226     230     234     238 



Reising et al., SWOT-ACT            ESTF 2010, Arlington, VA                              June 24, 2010    6 

Low frequency-
only algorithm 

Low frequency-
only algorithm 

Low and High 
frequency 
algorithm 

Low and High frequency algorithm 

High-resolution WRF model results show reduced wet path-delay error 
using both low-frequency (18-37 GHz) and high-frequency (90-170 
GHz) radiometer channels. 
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Objectives 

•   Develop low-power, low-mass and small-volume direct-detection 
millimeter wave receivers with integrated calibration sources covering 
frequencies from 90 to 170 GHz 

•   Design and fabricate a tri-frequency feed horn covering 90 to 170 GHz 

•   Design and fabricate a PIN-diode switch for calibration that can be 
integrated into the receiver front end 

•   Develop and test high-Excess Noise Ratio (ENR) noise sources from 
100 to 170 GHz 

•   Integrate and test components in MMIC-based low-mass, low-power, 
small-volume radiometer at 92, 130 and 166 GHz with the multi-
frequency feed horn 
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Requirements 

Key Antenna Subsystem RF Requirements 
Center frequencies 92, 130 and 166* GHz 
Bandwidths 10 GHz 
Port-to-port isolation > 20 dB 
Return loss > 15 dB 
Insertion loss < 0.75 dB 

Key Receiver RF Requirements 
Center frequencies 92, 130 and 166 GHz 
Bandwidths 5 GHz 
Noise Temperature < 1300 K 
Return loss > 15 dB 

*Note:  We will attempt to push all 166 GHz designs to accommodate 183 
GHz sounding channels as closely as possible. 
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System Block Diagram 
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92 GHz Receiver Noise Figure 

•   Easily meets specification of Receiver Noise Temperature < 1300 K 

Component Vendor Gain (dB) 
Noise Figure 

(dB) 
Cumulative Noise 
Temperature (K) 

Directional Coupler Dorado -0.5 0.5 35 

Isolator Raditek -0.5 0.5 75 

Waveguide-to-Microstrip Transition CSU/MSL -0.25 0.3 97 

Switch M/A-Com -1.2 1.2 220 

Low-Noise Amplifier HRL Labs 30 3.0 727 

Band-Definition Filter CSU/MSL -1.5 1.5 727 

Receiver Noise Factor 3.5 

Receiver Noise Figure (dB) 5.5 

Receiver Noise Temperature (K) 727.4 



Reising et al., SWOT-ACT            ESTF 2010, Arlington, VA                              June 24, 2010    11 

92 GHz Performance Analysis 
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Radiometric Resolution of SWOT-ACT Prototype Design 

SWOT-ACT Radiometer Prototype Design @ 92 GHz 
Advanced Microwave Sounding Unit On Orbit @ 89 GHz 
Microwave Humidity Sounder On Orbit @ 89 GHz 
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92 GHz Receiver Design 

•   Commercially-available off-the-shelf components 
•   Waveguide-based components: Isolator and directional 

coupler 
•   MMIC components:  PIN-diode switch, LNA and detector 

•   Passive components custom-designed at CSU 
•   RF bandpass filters, waveguide-to-microstrip transition 

and matched load 
•   MMIC multi-chip module custom-designed at CSU 
•   Noise diode packaged at JPL 
•   PIN-diode switches designed at JPL and fabricated at 

Northrup Grumman 
•   Three-frequency feed horn designed at JPL 
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Three-Frequency Horn Design 
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Feed Horn and Triplexer 
Simulated Performance 

92 GHz Return Loss 
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130 GHz Return Loss 
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PIN-Diode Switch Design Goals 

•   Radiometric objectives 
–   Provide a method for switching the radiometer from viewing an 

external scene to viewing an internal reference. 
•   Frequent calibration minimizes gain fluctuations to increase 

stability 

•   Desired RF characteristics from radiometer 
requirements 
–   Low insertion loss: minimizes impact on overall system noise 
–   High return loss: minimizes standing waves that increase calibration 

difficulty 
–   High isolation: eliminates scene contamination during calibration 
–   Stable  
–   Good switching speed (~0.1 ms) 

•   Current design simulations meet RF objectives for 
return loss, insertion loss, and isolation. 
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92-GHz PIN-Diode Switch Simulation Results 

92-GHz MMIC PIN-Diode Switch 

Insertion Loss 

Isolation 

Return Loss 
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135-GHz MMIC PIN-Diode Switch 

135-GHz PIN-Diode Switch Simulation Results 

Insertion Loss 

Isolation 

Return Loss 
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Noise Source Objectives  

•   Radiometric objectives 
–   Provide an electronically-switchable source for 

calibrating the radiometer over long time scales, i.e. 
hours to days. 

•   RF objective 
–   Stable Excess Noise Ratio (ENR) large enough to be 

useful in coupled noise configuration (~10 dB ENR or 
higher). 

•   Current design meets RF objectives at 92 GHz, and 
simulations show that current components can 
potentially meet objectives at 130 and 166 GHz. 
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Noise Diodes Measured to Date 

Package Style Manufacturer ENR @ 90 GHz 
(dB) 

ENR @ 120 GHz   
(dB) 

Beam Lead* M-Pulse 13   12 

Bare Die 
(substrate bypass) 

M-Pulse 11 4 

Bare Die  
(wire bypass) 

M-Pulse 10 4 

Bare Die Micronetics -- -- 

Bare Die** Virginia Diodes -- -- 

Bold indicates designs measured as of 2/15/2010. 
*Package produced for NASA/GSFC 
**Die produced through NASA SBIR; none procured at JPL to date  
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Initial packaging of beam lead diode in available 
waveguide-to-microstrip chassis using existing 
substrates  

Measured Noise Diode Package 
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Measured Noise Source Data 
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Waveguide-to-Microstrip 
Transition 

*Y.-C. Leong and S. Weinreb, “Full Band 
Waveguide-to- Microstrip Probe Transitions,” 
IEEE MTT-S Digest, pp. 1435-1438, 1999. 
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Front view of MCM with lid on 

92-GHz Multi-Chip Module Design 
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MCM boMom clamshell 

92-GHz Multi-Chip Module Design 
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92-GHz Multi-Chip Module 
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Summary 

•   Conventional altimeters include a nadir-viewing co-located 18-37 
GHz microwave radiometer to measure wet-tropospheric path 
delay.  However, they have reduced accuracy within 50 km of 
land. 

•   Addition of higher-frequency microwave channels to Jason-class 
radiometer will improve retrievals in coastal regions and may 
enable retrievals over land. 

•   To this end, we are developing low-power, low-mass and small-
volume direct-detection millimeter wave receivers with integrated 
calibration sources as well as a tri-frequency feed horn covering 
90 to 170 GHz. 

•   We are fabricating and testing a MMIC-based low-mass, low-
power, small-volume radiometer with channels at 92, 130 and 
166 GHz integrated with a tri-frequency feed horn. 
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Thanks to NASA ESTO 
for their continued 

support! 


